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Società Italiana di Fisica
Springer-Verlag 1999

Hot and cold denaturation of proteins: Critical aspects

A. Hansena, M.H. Jensen, K. Sneppen, and G. Zocchi

Niels Bohr Institute and NORDITA, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark

Received 9 November 1998

Abstract. We argue that the first order hot and cold folding transitions of proteins observed at physiological
chemical conditions ends in a critical point at a given temperature and chemical potential of the surrounding
water. We investigate the properties of this critical point using a single-pathway scenario for the folding
process. This pathway assumption determines the form of a Hamiltonian whose critical properties define
a new universality class.

PACS. 05.70.Jk Critical point phenomena – 82.20.Db Statistical theories (including transition state) –
87.15.By Structure, bonding, conformation, configuration, and isomerism of biomolecules

Biologically relevant proteins are macromolecules [1]
whose structures are determined by the evolutionary pro-
cess [2,3]. There have been many attempts to grasp as-
pects of the protein folding process [4], in enumeration of
configurations [5], in description of folding pathways [6]
and in discussing the influence of water on protein struc-
ture [7]. In the present paper we discuss further conse-
quences of protein folding along predesigned pathways.
Such pathways may for example have evolved by a pro-
tein evolution where subunits subsequently are added to
an already folding protein.

Several models have been proposed which address dif-
ferent aspects of the folding transition. A simple but ap-
pealing one is the “zipper model” [8], which was intro-
duced to describe the helix–coil transition. In this model,
the relevant degrees of freedom (conformational angles)
are modeled through binary variables. Each variable is
either matching the ordered structure (helix), or in a
“coiled” state. A related parametrization for the 3d fold-
ing transition has been proposed by Zwanzig [9], describ-
ing it in terms of variables ψi, each of which is “true” (1)
when there is local match with the correct ground state,
or “false” (0) if there is no match. The term “local” is here
defined through the parametrization index i. A zipper sce-
nario that deals with the initial pathway of protein folding
has been proposed by Dill et al. [6]. We can parametrize
this model in the same way as done by Zwanzig by as-
signing the value one to each of the binary variables ψi
describing closed contacts in the zipper. Built into the
model is that opening and closing of contacts occur in a
particular order: they behave as the individual locks in a
zipper. This ordering is characterized through imposing
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the constraints

ψi ≥ ψi+1. (1)

The variables ψi alone cannot describe the degrees of free-
dom that become liberated when a portion of the zipper
is open. The open part of the zipper may move freely
(ψi = 0) whereas they cannot move in the part of the zip-
per where the contacts are closed (ψi = 1). In order to take
into account this effect, we introduce a second, indepen-
dent set of variables ξi. For simplicity, we also make these
variables binary, taking the values 1 or −B. We are now
in the position to propose a Hamiltonian for this zipper
model,

H = −
N∑
i=1

ψiξi, (2)

subjected to the constraints (1).
We note that for any finite value of B, parts of the

protein may unfold inside the already folded region i.e. in
the parts of the zipper where ψi = 1. In order to prevent
this, we assume B to be sufficiently large compared to
any other energy scale in the system — in particular kT ,
where T is the temperature — so that the ξi variables
never assume the value −B as long as ψi = 1.

We will in the following use this Hamiltonian as a
starting point for analyzing the hot and cold denaturation
transitions of proteins when dissolved in water [10,11]. It
is awkward to work with the Hamiltonian (2) directly be-
cause of the constraints (1). We therefore make a trans-
formation to a different set of variables where the con-
straints (1) are implicitly taken into account and we obtain
then the Hamiltonian we have already introduced previ-
ously [10,11]. We define a set of binary, unconstrained
variables ϕi, by the following relation:

ψi = ϕ1 · · ·ϕi. (3)
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In particular, ψ1 = ϕ1. In the limit when B → ∞, the
Hamiltonian (2) becomes

H = − ϕ1 − ϕ1ϕ2 − ϕ1ϕ2ϕ3 − · · · − ϕ1ϕ2 · · ·ϕN , (4)

where there are no additional constraints [11]. The role of
the variables ξi — which is to provide entropy to the un-
folded part (ψi = 0) of the zipper — is now played by the
degeneracy introduced into the Hamiltonian in the follow-
ing way: when a particular ϕj = 0, the Hamiltonian (4)
will be degenerate with respect to the variables ϕi where
i > j.

The interactions between protein and water may
be taken into account by adding to (4) a coupling
parametrized through water variables w1, w2, ..., wN [11].
Returning for a moment to the original variables ψi, we
propose an interaction (1−ψiξi)wi. The rationale behind
this form is that when a contact is open (ψi = 0), the part
of the protein parametrized by i is exposed to water and
interact, while if the contact is closed (ψi = 1), there is no
access to the water and the interaction is zero. Returning
to the new variables ϕi, the resulting Hamiltonian is [11]

H = −E0(ϕ1 + ϕ1ϕ2 + ϕ1ϕ2ϕ3 + · · ·+ ϕ1ϕ2 · · ·ϕN )

+ [(1− ϕ1)w1 + (1− ϕ1ϕ2)w2 + · · ·

+ (1− ϕ1ϕ2 · · ·ϕN )wN ], (5)

where we have introduced a scale parameter E0 in or-
der to vary the relative strength of the protein self in-
teractions and the protein-water interactions. In order to
model hydrophobicity, we assume the wi variables take
values Emin + s∆, s = 0, 1, ..., g − 1. Here, ∆ is the spac-
ing of the energy levels of the water-protein interactions.
The equidistant energy levels reflect the experimentally
observed approximate constant heat capacity at interme-
diate temperatures, whereas the finite number of levels g
takes into account that protein-water interactions vanish
at high temperatures, in practice above 120 ◦C.

The number of terms in the Hamiltonian (5), N , is
the number of contact in the zipper model. This number
may be equal to the number of amino acids, but is a priori
unknown. It is important to realize that if one parametrize
the folding with fewer steps N , each unit will be larger and
energies and entropies appropriately increased (inversely
proportional to N).

The partition function is

Z =
(

eE0/T
)N (1

2

r−N − 1

1− r
+ 1

)
. (6)

The variable r is the ratio of statistical weights of unfolded
to folded state, per variable:

r =
g

2
e−µ/T

1− e−∆/T

1− e−g∆/T
(7)

with µ = −E0 − Emin being the chemical potential of the
surrounding water.

The physical meaning of this model is that the water
molecules in contact with an unfolded portion of the pro-
tein has lower entropy than when not in contact (thus in

the our model, hydrophobicity is caused by ordering of
water and not by repulsive potentials, as is usually be-
lieved [13]). In the model one finds that a first order tran-
sition takes place when the parameter r switches between
r < 1 and r > 1. Plotting r against T one obtains a non-
monotonic function which for small µ values passes r = 1
twice, corresponding to unfolding at both low and high
temperature, as indeed seen in experiments [14,15]. The
mechanism for the transitions is the following. At high
temperature the entropy gain of the protein chain causes
the unfolding. As temperature is lowered the system gains
more entropy by shielding the hydrophobic residues from
the water. This leads to folding. As the temperature is
lowered even further the cold unfolding transition occurs.
Below this transition entropy is insignificant and the dom-
inating effect is the attractive coupling between the water
and the unfolded protein.

For an intermediate value of the chemical potential, r
just touches the line r = 1, that is dr/dT = 0 when r = 1,
corresponding to a merging of two first order transitions.
This defines a critical point. Around this point, r varies
quadratically in T −Tc and linearly in µ−µc, as seen from
expanding equation (7). In experiments of protein folding
this point is accessible by changing the pH value of the
solution. In fact, Privalov’s data on low pH values indeed
indicate that such a critical point exists. The scaling prop-
erties around this point thus opens for a possibility to gain
insight into the nature of the folding process, in particular
whether the pathway scheme we suggest can be falsified.

In Figure 1a we show heat capacity as a function of
temperature for chemical potential below, at and above
the critical value µ = µc. For the chosen values of E0 = 1
and level density ∆ = 0.02 and g = 350 the critical point
is situated at Tc = 1.33303 . . . , µc = 1.2838 . . . . That is,
it is situated at a minimum of the heat capacity curve.
This is at first sight surprising, usually heat capacity has
a pronounced increase at the critical point. The minimum
reflects a partial ordering, as envisioned in Figure 1b where
we show the degree of folding, counted by the average
number of folded variables ϕi = 1, i = 1, ..., n from i = 1
until the first variable i = n+ 1 which takes value ϕn+1 =
0. The average value of this 〈n〉 is N/2 at the critical point,
reflecting that the system is on average half ordered at this
point. Correspondingly the heat capacity dips to a value in
between the value of an unfolded and a completely folded
state.

To characterize the functional form of the dip in
the heat capacity, we investigate analytically Csing(T ) =
C(T, µ)−C(T, µc) with µ� µc for different values of the
size N . For finite N we may express the singular part of
the heat capacity in the form:

Csing = |Tc − T |
−αg

(
(Tc − T )N1/ν

)
(8)

where g(x) → const when x → ∞ and g(x) ∝ xα when
x → 0. We find analytically α = ν = 2 from differentiat-
ing the partition function (6). Figure 2a demonstrate this
finite size scaling. Similarly we in Figure 2b show the be-
havior of the order parameter 〈n〉 as function of T − Tc
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Fig. 1. (a) Heat capacity, C, as a function of T . (b) Degree of folding, 〈n〉, as a function of T . Here g = 350, ∆ = 0.02 and
N = 100. The value N = 100 has been chosen as to be close to realistic values for this parameter.
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Fig. 2. (a) Finite size scaling of the heat capacity for µ = µc, g = 350 and ∆ = 0.02. Here α = 2 and ν = 2. (b) Finite size
scaling of degree of folding, 〈n〉. Here β = −2.

and N :

〈n〉 = |T − Tc|
βf
(

(T − Tc)N
1/ν
)

(9)

with f(x) → const when x → ∞ and f(x) ∝ x−β when
x → 0 where exponents β = −2, also found analytically.
At a first glance, it might seem surprising that β is neg-
ative. This however reflects in part the unusual use of an
extensive (in N) order parameter, and in part, that for
µ = µc, the order parameter only becomes non-zero at
T = Tc when N →∞.

Likewise, we find that the susceptibility χ = d〈n〉/dµ
scales as |T−Tc|−γ where γ = 4 and that 〈n〉 ∝ (µ−µc)

1/δ

for µ > µc where δ = −1. Thus the usual exponent
relations, α + 2β + γ = 2, α + β(δ + 1) = 2, and
γ(δ + 1) = (2 − α)(δ − 1) are fulfilled [16]. (Note, that
the hyperscaling relation dν = 2 − α, where d is the di-
mensionality of the system, is not fulfilled. This relation
has however no meaning, as there are no spatial degrees
of freedom.)

In terms of experiments on proteins, the relevant scal-
ing behaviour is the how the degree of folding (order pa-
rameter) and the heat capacity behaves as function of tem-
perature, when one changes the chemical potential away
from its critical value. The qualitative prediction is that
the width of the singular part of the heat capacity has a
minimum at the critical value µ = µc. The broadening of
the heat capacity is

Csing(T − Tc)
2 = h

(
T − Tc

∆µ1/2

)
for µ > µc (10)

where h(x) ∝ x−2 for x→∞ and h(x) = const for x→ 0
and where ∆µ = max(µ− µc,∆µmin) with ∆µmin ∝ 1/N
takes into account the finite size sensitivity of the scal-
ing. We show in Figure 3a, an example of such a data
collapse. These predictions are experimentally accessible
through the use of standard calorimetric techniques, where
one should seek to obtain a data collapse above the crit-
ical point, i.e. the point of minimal width. The heat



196 The European Physical Journal B

0.5 0.0 0.5
(TT c)/∆µ1/2

0.2

0.1

0.0

C
si

ng
 (

T
T

c)
2

µ = 1.34
µ = 1.36
µ = 1.40
µ = 1.44
µ = 1.48

(a)

1 0 1
(TT c)/∆µ1/2

0.1

0.4

0.9

<
n>

 (
T

T
c)

2

µ = 1.34
µ = 1.36
µ = 1.40
µ = 1.44
µ = 1.48

(b)

Fig. 3. (a) Csing(T − Tc)
2 vs. (T − Tc)/∆µ

1/2. (b) 〈n〉(T − Tc)2 vs. (T − Tc)/∆µ
1/2. We have chosen N = 100, g = 350 and

∆ = 0.02. Note the good quality of the data collapse in spite of smallness of the system.

capacity below the critical µ is complicated by the merg-
ing of two first order transitions. However, the distance
between these moves away from each other in T as ∆µ1/2.

Likewise, we expect the degree of folding 〈n〉 to show
data collapse of the form

〈n〉(T − Tc)
2µ > µc (11)

where k(x) behaves asymptotically as h. We show this in
Figure 3b. This quantity can be observed experimentally
through fluorescence measurements.

In summary, we have proposed that a folding path-
ways implemented for proteins in water implies a critical
point with a diminishing heat capacity at criticality. We
have determined all critical exponents, and proposed two
experiments that could confirm or falsify the concept of a
sequentially ordered folding.
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